Использование функционала электронных таблиц Open Office для обработки данных, получаемых в цифровой лаборатории.

Инструментарий ЦЛ, без сомнения может использоваться для организации собственных исследовательских работ, в которых с помощью датчиков получаются первичные данные, а затем они переносятся во внешние редакторы таблиц (например, MS Excel или электронные таблицы Open Office) и там обрабатываются или проходят первичную обработку внутри программы «Научные развлечения Цифровая лаборатория», а затем экспортируются во внешний редактор для окончательной обработки.

Примером первой работы может быть работа по измерению ускорения при движении бруска вверх и вниз по наклонной плоскости

Для ее проведения к деревянному бруску крепится кнопками полиуретановый коврик (рис.1а) и собирается установка для изучения движения бруска по наклонной плоскости с помощью ультразвукового датчика расстояния (рис.1б). При этом надо учесть, что датчик правильно регистрирует расстояния до отражателя ультразвука начиная с расстояния 30 см.

Рис.1

Включив источник питания датчика расстояния в сеть 220В и запустив программу, убеждаются, что датчик распознан и реагирует на перемещения бруска вверх по наклонной плоскости. Измеряют расстояние от отражателя ультразвука до датчика в верхней точке наклонной плоскости линейкой и с помощью датчика.

Запустив регистрацию показаний датчика, резко толкают брусок вверх по наклонной плоскости и продолжают регистрацию во время движения бруска вверх по наклонной плоскости и затем вниз до остановки.

Не останавливая регистрацию, повторяют запуск несколько раз (рис.2а). Остановив запись, переходят к обработке результатов.

Увеличивая нужный участок кривой зависимости расстояния до бруска от времени (нажимают кнопку Alt и обводят участок кривой при нажатой левой кнопки мыши), выделяют участок от начала движения до удара о стол зеленым (клик правой кнопки мыши) и желтым (клик левой кнопки мыши) маркерами (рис.2б). и сохраняйте показания датчика в в виде txt-файла. Для этого используют кнопку . Для сохранения вида кривой, полученной с датчика в виде отдельного bmp-файла можно воспользоваться кнопкой .

Для переноса данных с датчика полученные в течение 1-2 с (в данном случае это около 15 точек) в редактор таблиц MS Excel нужно открыть файл txt-файл (рис.3а), выделить все значения в таблице, скопировать их в буфер обмена, а затем, открыв MS Excel и встав в соответствующую ячейку редактора (рис.3б), использовать опцию «Вставить».

С дальнейшими операциями по обработке данных в MS Excel можно ознакомиться, использовав, например, инструкцию <u>http://school-collection.edu.ru/catalog/res/2356171d-fa1d-43d9-8062-61ad170cad2d/view/</u> или здесь

Если недоступен MS Excel, возможна обработка данных в редакторе Таблиц в открытом доступе Open Office. После перехода в котором в опцию «Электронные таблицы» можно проделать большинство (хотя и не все) операций с данными, что и в MS Excel. Для этого следует воспользоваться опцией «Вставка-Лист из файла» (рис.3в). Если необходимо поместить данные из нескольких txt-файлов на один лист электронной таблицы, то в Open Office, необходимо перенести данные из каждого txt-файла на разные листы, а затем скопирвать их с одного листа на другой.

На рис.4 показано, как после перенесения в Open Office таблица «t-х» обрабатывается для получения графика зависимости скорости бруска от времени и расчета ускорения при движении бруска вверх и вниз. Для этого, используя операции со столбцами, рассчитываются значения интервалов времени, от начала участков равнозамедленного и равноускоренного движения бруска, соответствующие расстояния, пройденные бруском и скорости бруска на каждом интервале времени длительностью 0,1с. Затем строится график с использованием опции «Вставка-Диаграмма-Диаграмма ХҮ». После построения графика редактор позволяет построить наилучшую прямую с коэффициентами, подобранными по методу наименьших квадратов.

t, c	х,м	t-t ₀	S, M	v, м/с
24,05	1,014	0	0	

24,15	1,016	0,1	0,077	
24,25	0,939	0,2	0,312	2,35
24,35	0,704	0,3	0,492	1,8
24,45	0,524	0,4	0,605	1,13
24,55	0,411	0,5	0,641	0,36
24,65	0,375	0,6	0,628	Движение вниз
24,75	0,388			
24,85	0,414			
24,95	0,439			
25,05	0,485			
25,15	0,545			
25,25	0,618			
25,35	0,702			
25,45	0,799			
25,55	0,913			
25,65	1,026			
25,75	1,068			
25,85	1,071			

Рис.4

При использовании нескольких датчиков в одной работе и при регистрации данных в течение нескольких минут возникает проблема синхронизация времени на кривых с двух датчиков и проблема предварительного отбора точек переносимых во внешний редактор таблиц. Так, например, в работе «Закон Ома для участка цепи» используются два датчика: напряжения и силы тока (рис.5).

Используя переменный резистор (реостат) экспериментатор фиксирует положение ручки реостата в некоторых положениях, получая кривую, подобную показанной на рис.6

Рис.6

Для формирования таблиц с отбором по одной точке при каждом положении ручки реостата, используется желтый вертикальный маркер (выставляется кликом левой кнопкой мыши в нужном месте рабочего поля) и кнопка 🗭 в правом верхнем углу рабочего поля. Перемещая маркер и кликая на кнопку 🗭 на поле показаний обоих датчиков, формируем две таблицы в txt-файлах. Затем переносим их в редактор таблиц и строим график напряжения на резисторе U от силы тока I (рис.7)

Обработка линейного графика по методу наименьших квадратов проводится аналогично описанному выше с использованием опции «Вставить линию тренда», открывающейся после построения графика и клика на одну из точек графика (рис.8)

t, c	I, A		U, B
4,5	0,32	0,33	-3,35
6,7	0,31	0,32	-3,27
8,7	0,25	0,26	-2,68
10,7	0,24	0,25	-2,51
12,5	0,22	0,23	-2,32
14,5	0,17	0,18	-1,81
16,9	0,13	0,14	-1,46
19,5	0,06	0,07	-0,7
21,3	-0,01	0	0
23,7	0,09	0,1	-1,08
25,1	0,14	0,15	-1,5
25,9	0,27	0,28	-2,81
27,3	0,31	0,32	-3,27

